Point Cloud Library (PCL) 1.14.0
Loading...
Searching...
No Matches
orr_octree.h
1/*
2 * Software License Agreement (BSD License)
3 *
4 * Point Cloud Library (PCL) - www.pointclouds.org
5 * Copyright (c) 2010-2012, Willow Garage, Inc.
6 *
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * * Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * * Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 * * Neither the name of Willow Garage, Inc. nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 *
36 *
37 */
38
39/*
40 * orr_octree.h
41 *
42 * Created on: Oct 23, 2012
43 * Author: papazov
44 */
45
46#pragma once
47
48#include "auxiliary.h"
49#include <pcl/point_types.h>
50#include <pcl/point_cloud.h>
51#include <pcl/pcl_exports.h>
52#include <vector>
53#include <list>
54#include <set>
55
56//#define PCL_REC_ORR_OCTREE_VERBOSE
57
58namespace pcl
59{
60 namespace recognition
61 {
62 /** \brief That's a very specialized and simple octree class. That's the way it is intended to
63 * be, that's why no templates and stuff like this.
64 *
65 * \author Chavdar Papazov
66 * \ingroup recognition
67 */
68 class PCL_EXPORTS ORROctree
69 {
70 public:
74
75 class Node
76 {
77 public:
78 class Data
79 {
80 public:
81 Data (int id_x, int id_y, int id_z, int lin_id, void* user_data = nullptr)
82 : id_x_ (id_x),
83 id_y_ (id_y),
84 id_z_ (id_z),
85 lin_id_ (lin_id),
86
87 user_data_ (user_data)
88 {
89 n_[0] = n_[1] = n_[2] = p_[0] = p_[1] = p_[2] = 0.0f;
90 }
91
92 virtual~ Data () = default;
93
94 inline void
95 addToPoint (float x, float y, float z)
96 {
97 p_[0] += x; p_[1] += y; p_[2] += z;
98 ++num_points_;
99 }
100
101 inline void
103 {
104 if ( num_points_ < 2 )
105 return;
106
107 aux::mult3 (p_, 1.0f/static_cast<float> (num_points_));
108 num_points_ = 1;
109 }
110
111 inline void
112 addToNormal (float x, float y, float z) { n_[0] += x; n_[1] += y; n_[2] += z;}
113
114 inline const float*
115 getPoint () const { return p_;}
116
117 inline float*
118 getPoint (){ return p_;}
119
120 inline const float*
121 getNormal () const { return n_;}
122
123 inline float*
124 getNormal (){ return n_;}
125
126 inline void
127 get3dId (int id[3]) const
128 {
129 id[0] = id_x_;
130 id[1] = id_y_;
131 id[2] = id_z_;
132 }
133
134 inline int
135 get3dIdX () const {return id_x_;}
136
137 inline int
138 get3dIdY () const {return id_y_;}
139
140 inline int
141 get3dIdZ () const {return id_z_;}
142
143 inline int
144 getLinearId () const { return lin_id_;}
145
146 inline void
147 setUserData (void* user_data){ user_data_ = user_data;}
148
149 inline void*
150 getUserData () const { return user_data_;}
151
152 inline void
153 insertNeighbor (Node* node){ neighbors_.insert (node);}
154
155 inline const std::set<Node*>&
156 getNeighbors () const { return (neighbors_);}
157
158 protected:
159 float n_[3]{}, p_[3]{};
160 int id_x_{0}, id_y_{0}, id_z_{0}, lin_id_{0}, num_points_{0};
161 std::set<Node*> neighbors_;
162 void *user_data_{nullptr};
163 };
164
165 Node () = default;
166
167 virtual~ Node ()
168 {
169 this->deleteChildren ();
170 this->deleteData ();
171 }
172
173 inline void
174 setCenter(const float *c) { center_[0] = c[0]; center_[1] = c[1]; center_[2] = c[2];}
175
176 inline void
177 setBounds(const float *b) { bounds_[0] = b[0]; bounds_[1] = b[1]; bounds_[2] = b[2]; bounds_[3] = b[3]; bounds_[4] = b[4]; bounds_[5] = b[5];}
178
179 inline void
180 setParent(Node* parent) { parent_ = parent;}
181
182 inline void
183 setData(Node::Data* data) { data_ = data;}
184
185 /** \brief Computes the "radius" of the node which is half the diagonal length. */
186 inline void
188 {
189 float v[3] = {0.5f*(bounds_[1]-bounds_[0]), 0.5f*(bounds_[3]-bounds_[2]), 0.5f*(bounds_[5]-bounds_[4])};
190 radius_ = static_cast<float> (aux::length3 (v));
191 }
192
193 inline const float*
194 getCenter() const { return center_;}
195
196 inline const float*
197 getBounds() const { return bounds_;}
198
199 inline void
200 getBounds(float b[6]) const
201 {
202 std::copy(bounds_, bounds_ + 6, b);
203 }
204
205 inline Node*
206 getChild (int id) { return &children_[id];}
207
208 inline Node*
209 getChildren () { return children_;}
210
211 inline Node::Data*
212 getData (){ return data_;}
213
214 inline const Node::Data*
215 getData () const { return data_;}
216
217 inline void
218 setUserData (void* user_data){ data_->setUserData (user_data);}
219
220 inline Node*
221 getParent (){ return parent_;}
222
223 inline bool
224 hasData (){ return static_cast<bool> (data_);}
225
226 inline bool
227 hasChildren (){ return static_cast<bool> (children_);}
228
229 /** \brief Computes the "radius" of the node which is half the diagonal length. */
230 inline float
231 getRadius () const{ return radius_;}
232
233 bool
235
236 inline void
238 {
239 delete[] children_;
240 children_ = nullptr;
241 }
242
243 inline void
245 {
246 delete data_;
247 data_ = nullptr;
248 }
249
250 /** \brief Make this and 'node' neighbors by inserting each node in the others node neighbor set. Nothing happens
251 * of either of the nodes has no data. */
252 inline void
254 {
255 if ( !this->getData () || !node->getData () )
256 return;
257
258 this->getData ()->insertNeighbor (node);
259 node->getData ()->insertNeighbor (this);
260 }
261
262 protected:
263 Node::Data *data_{nullptr};
264 float center_[3]{}, bounds_[6]{}, radius_{0.0f};
265 Node *parent_{nullptr}, *children_{nullptr};
266 };
267
269 virtual ~ORROctree (){ this->clear ();}
270
271 void
273
274 /** \brief Creates an octree which encloses 'points' and with leaf size equal to 'voxel_size'.
275 * 'enlarge_bounds' makes sure that no points from the input will lie on the octree boundary
276 * by enlarging the bounds by that factor. For example, enlarge_bounds = 1 means that the
277 * bounds will be enlarged by 100%. The default value is fine. */
278 void
279 build (const PointCloudIn& points, float voxel_size, const PointCloudN* normals = nullptr, float enlarge_bounds = 0.00001f);
280
281 /** \brief Creates an empty octree with bounds at least as large as the ones provided as input and with leaf
282 * size equal to 'voxel_size'. */
283 void
284 build (const float* bounds, float voxel_size);
285
286 /** \brief Creates the leaf containing p = (x, y, z) and returns a pointer to it, however, only if p lies within
287 * the octree bounds! A more general version which allows p to be out of bounds is not implemented yet. The method
288 * returns NULL if p is not within the root bounds. If the leaf containing p already exists nothing happens and
289 * method just returns a pointer to the leaf. */
290 inline ORROctree::Node*
291 createLeaf (float x, float y, float z)
292 {
293 // Make sure that the input point is within the octree bounds
294 if ( x < bounds_[0] || x > bounds_[1] ||
295 y < bounds_[2] || y > bounds_[3] ||
296 z < bounds_[4] || z > bounds_[5] )
297 {
298 return (nullptr);
299 }
300
301 ORROctree::Node* node = root_;
302 const float *c;
303 int id;
304
305 // Go down to the right leaf
306 for ( int l = 0 ; l < tree_levels_ ; ++l )
307 {
308 node->createChildren ();
309 c = node->getCenter ();
310 id = 0;
311
312 if ( x >= c[0] ) id |= 4;
313 if ( y >= c[1] ) id |= 2;
314 if ( z >= c[2] ) id |= 1;
315
316 node = node->getChild (id);
317 }
318
319 if ( !node->getData () )
320 {
321 auto* data = new Node::Data (
322 static_cast<int> ((node->getCenter ()[0] - bounds_[0])/voxel_size_),
323 static_cast<int> ((node->getCenter ()[1] - bounds_[2])/voxel_size_),
324 static_cast<int> ((node->getCenter ()[2] - bounds_[4])/voxel_size_),
325 static_cast<int> (full_leaves_.size ()));
326
327 node->setData (data);
328 this->insertNeighbors (node);
329 full_leaves_.push_back (node);
330 }
331
332 return (node);
333 }
334
335 /** \brief This method returns a super set of the full leavess which are intersected by the sphere
336 * with radius 'radius' and centered at 'p'. Pointers to the intersected full leaves are saved in
337 * 'out'. The method computes a super set in the sense that in general not all leaves saved in 'out'
338 * are really intersected by the sphere. The intersection test is based on the leaf radius (since
339 * its faster than checking all leaf corners and sides), so we report more leaves than we should,
340 * but still, this is a fair approximation. */
341 void
342 getFullLeavesIntersectedBySphere (const float* p, float radius, std::list<ORROctree::Node*>& out) const;
343
344 /** \brief Randomly chooses and returns a full leaf that is intersected by the sphere with center 'p'
345 * and 'radius'. Returns NULL if no leaf is intersected by that sphere. */
347 getRandomFullLeafOnSphere (const float* p, float radius) const;
348
349 /** \brief Since the leaves are aligned in a rectilinear grid, each leaf has a unique id. The method returns the leaf
350 * with id [i, j, k] or NULL is no such leaf exists. */
352 getLeaf (int i, int j, int k)
353 {
354 float offset = 0.5f*voxel_size_;
355 float p[3] = {bounds_[0] + offset + static_cast<float> (i)*voxel_size_,
356 bounds_[2] + offset + static_cast<float> (j)*voxel_size_,
357 bounds_[4] + offset + static_cast<float> (k)*voxel_size_};
358
359 return (this->getLeaf (p[0], p[1], p[2]));
360 }
361
362 /** \brief Returns a pointer to the leaf containing p = (x, y, z) or NULL if no such leaf exists. */
363 inline ORROctree::Node*
364 getLeaf (float x, float y, float z)
365 {
366 // Make sure that the input point is within the octree bounds
367 if ( x < bounds_[0] || x > bounds_[1] ||
368 y < bounds_[2] || y > bounds_[3] ||
369 z < bounds_[4] || z > bounds_[5] )
370 {
371 return (nullptr);
372 }
373
374 ORROctree::Node* node = root_;
375 const float *c;
376 int id;
377
378 // Go down to the right leaf
379 for ( int l = 0 ; l < tree_levels_ ; ++l )
380 {
381 if ( !node->hasChildren () )
382 return (nullptr);
383
384 c = node->getCenter ();
385 id = 0;
386
387 if ( x >= c[0] ) id |= 4;
388 if ( y >= c[1] ) id |= 2;
389 if ( z >= c[2] ) id |= 1;
390
391 node = node->getChild (id);
392 }
393
394 return (node);
395 }
396
397 /** \brief Deletes the branch 'node' is part of. */
398 void
400
401 /** \brief Returns a vector with all octree leaves which contain at least one point. */
402 inline std::vector<ORROctree::Node*>&
403 getFullLeaves () { return full_leaves_;}
404
405 inline const std::vector<ORROctree::Node*>&
406 getFullLeaves () const { return full_leaves_;}
407
408 void
410
411 void
413
414 inline ORROctree::Node*
415 getRoot (){ return root_;}
416
417 inline const float*
418 getBounds () const
419 {
420 return (bounds_);
421 }
422
423 inline void
424 getBounds (float b[6]) const
425 {
426 std::copy(bounds_, bounds_ + 6, b);
427 }
428
429 inline float
430 getVoxelSize () const { return voxel_size_;}
431
432 inline void
434 {
435 const float* c = node->getCenter ();
436 float s = 0.5f*voxel_size_;
437 Node *neigh;
438
439 neigh = this->getLeaf (c[0]+s, c[1]+s, c[2]+s); if ( neigh ) node->makeNeighbors (neigh);
440 neigh = this->getLeaf (c[0]+s, c[1]+s, c[2] ); if ( neigh ) node->makeNeighbors (neigh);
441 neigh = this->getLeaf (c[0]+s, c[1]+s, c[2]-s); if ( neigh ) node->makeNeighbors (neigh);
442 neigh = this->getLeaf (c[0]+s, c[1] , c[2]+s); if ( neigh ) node->makeNeighbors (neigh);
443 neigh = this->getLeaf (c[0]+s, c[1] , c[2] ); if ( neigh ) node->makeNeighbors (neigh);
444 neigh = this->getLeaf (c[0]+s, c[1] , c[2]-s); if ( neigh ) node->makeNeighbors (neigh);
445 neigh = this->getLeaf (c[0]+s, c[1]-s, c[2]+s); if ( neigh ) node->makeNeighbors (neigh);
446 neigh = this->getLeaf (c[0]+s, c[1]-s, c[2] ); if ( neigh ) node->makeNeighbors (neigh);
447 neigh = this->getLeaf (c[0]+s, c[1]-s, c[2]-s); if ( neigh ) node->makeNeighbors (neigh);
448
449 neigh = this->getLeaf (c[0] , c[1]+s, c[2]+s); if ( neigh ) node->makeNeighbors (neigh);
450 neigh = this->getLeaf (c[0] , c[1]+s, c[2] ); if ( neigh ) node->makeNeighbors (neigh);
451 neigh = this->getLeaf (c[0] , c[1]+s, c[2]-s); if ( neigh ) node->makeNeighbors (neigh);
452 neigh = this->getLeaf (c[0] , c[1] , c[2]+s); if ( neigh ) node->makeNeighbors (neigh);
453 //neigh = this->getLeaf (c[0] , c[1] , c[2] ); if ( neigh ) node->makeNeighbors (neigh);
454 neigh = this->getLeaf (c[0] , c[1] , c[2]-s); if ( neigh ) node->makeNeighbors (neigh);
455 neigh = this->getLeaf (c[0] , c[1]-s, c[2]+s); if ( neigh ) node->makeNeighbors (neigh);
456 neigh = this->getLeaf (c[0] , c[1]-s, c[2] ); if ( neigh ) node->makeNeighbors (neigh);
457 neigh = this->getLeaf (c[0] , c[1]-s, c[2]-s); if ( neigh ) node->makeNeighbors (neigh);
458
459 neigh = this->getLeaf (c[0]-s, c[1]+s, c[2]+s); if ( neigh ) node->makeNeighbors (neigh);
460 neigh = this->getLeaf (c[0]-s, c[1]+s, c[2] ); if ( neigh ) node->makeNeighbors (neigh);
461 neigh = this->getLeaf (c[0]-s, c[1]+s, c[2]-s); if ( neigh ) node->makeNeighbors (neigh);
462 neigh = this->getLeaf (c[0]-s, c[1] , c[2]+s); if ( neigh ) node->makeNeighbors (neigh);
463 neigh = this->getLeaf (c[0]-s, c[1] , c[2] ); if ( neigh ) node->makeNeighbors (neigh);
464 neigh = this->getLeaf (c[0]-s, c[1] , c[2]-s); if ( neigh ) node->makeNeighbors (neigh);
465 neigh = this->getLeaf (c[0]-s, c[1]-s, c[2]+s); if ( neigh ) node->makeNeighbors (neigh);
466 neigh = this->getLeaf (c[0]-s, c[1]-s, c[2] ); if ( neigh ) node->makeNeighbors (neigh);
467 neigh = this->getLeaf (c[0]-s, c[1]-s, c[2]-s); if ( neigh ) node->makeNeighbors (neigh);
468 }
469
470 protected:
471 float voxel_size_{-1.0}, bounds_[6];
472 int tree_levels_{-1};
473 Node* root_{nullptr};
474 std::vector<Node*> full_leaves_;
475 };
476 } // namespace recognition
477} // namespace pcl
void addToPoint(float x, float y, float z)
Definition orr_octree.h:95
const std::set< Node * > & getNeighbors() const
Definition orr_octree.h:156
Data(int id_x, int id_y, int id_z, int lin_id, void *user_data=nullptr)
Definition orr_octree.h:81
void addToNormal(float x, float y, float z)
Definition orr_octree.h:112
void setBounds(const float *b)
Definition orr_octree.h:177
void setCenter(const float *c)
Definition orr_octree.h:174
const float * getBounds() const
Definition orr_octree.h:197
float getRadius() const
Computes the "radius" of the node which is half the diagonal length.
Definition orr_octree.h:231
const Node::Data * getData() const
Definition orr_octree.h:215
void getBounds(float b[6]) const
Definition orr_octree.h:200
void setUserData(void *user_data)
Definition orr_octree.h:218
const float * getCenter() const
Definition orr_octree.h:194
void computeRadius()
Computes the "radius" of the node which is half the diagonal length.
Definition orr_octree.h:187
void setData(Node::Data *data)
Definition orr_octree.h:183
void makeNeighbors(Node *node)
Make this and 'node' neighbors by inserting each node in the others node neighbor set.
Definition orr_octree.h:253
That's a very specialized and simple octree class.
Definition orr_octree.h:69
void build(const PointCloudIn &points, float voxel_size, const PointCloudN *normals=nullptr, float enlarge_bounds=0.00001f)
Creates an octree which encloses 'points' and with leaf size equal to 'voxel_size'.
const float * getBounds() const
Definition orr_octree.h:418
void deleteBranch(Node *node)
Deletes the branch 'node' is part of.
ORROctree::Node * getRandomFullLeafOnSphere(const float *p, float radius) const
Randomly chooses and returns a full leaf that is intersected by the sphere with center 'p' and 'radiu...
ORROctree::Node * getRoot()
Definition orr_octree.h:415
void getNormalsOfFullLeaves(PointCloudN &out) const
ORROctree::Node * getLeaf(int i, int j, int k)
Since the leaves are aligned in a rectilinear grid, each leaf has a unique id.
Definition orr_octree.h:352
ORROctree::Node * getLeaf(float x, float y, float z)
Returns a pointer to the leaf containing p = (x, y, z) or NULL if no such leaf exists.
Definition orr_octree.h:364
ORROctree::Node * createLeaf(float x, float y, float z)
Creates the leaf containing p = (x, y, z) and returns a pointer to it, however, only if p lies within...
Definition orr_octree.h:291
void build(const float *bounds, float voxel_size)
Creates an empty octree with bounds at least as large as the ones provided as input and with leaf siz...
void getFullLeavesPoints(PointCloudOut &out) const
void getFullLeavesIntersectedBySphere(const float *p, float radius, std::list< ORROctree::Node * > &out) const
This method returns a super set of the full leavess which are intersected by the sphere with radius '...
void getBounds(float b[6]) const
Definition orr_octree.h:424
void insertNeighbors(Node *node)
Definition orr_octree.h:433
std::vector< ORROctree::Node * > & getFullLeaves()
Returns a vector with all octree leaves which contain at least one point.
Definition orr_octree.h:403
std::vector< Node * > full_leaves_
Definition orr_octree.h:474
const std::vector< ORROctree::Node * > & getFullLeaves() const
Definition orr_octree.h:406
Defines all the PCL implemented PointT point type structures.