Point Cloud Library (PCL) 1.14.0
Loading...
Searching...
No Matches
normal_3d.h
1/*
2 * Software License Agreement (BSD License)
3 *
4 * Point Cloud Library (PCL) - www.pointclouds.org
5 * Copyright (c) 2010-2011, Willow Garage, Inc.
6 * Copyright (c) 2012-, Open Perception, Inc.
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 *
14 * * Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * * Redistributions in binary form must reproduce the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer in the documentation and/or other materials provided
19 * with the distribution.
20 * * Neither the name of the copyright holder(s) nor the names of its
21 * contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
30 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 *
37 * $Id$
38 *
39 */
40
41#pragma once
42
43#include <pcl/memory.h>
44#include <pcl/pcl_macros.h>
45#include <pcl/features/feature.h>
46#include <pcl/common/centroid.h>
47
48namespace pcl
49{
50 /** \brief Compute the Least-Squares plane fit for a given set of points, and return the estimated plane
51 * parameters together with the surface curvature.
52 * \param cloud the input point cloud
53 * \param plane_parameters the plane parameters as: a, b, c, d (ax + by + cz + d = 0)
54 * \param curvature the estimated surface curvature as a measure of
55 * \f[
56 * \lambda_0 / (\lambda_0 + \lambda_1 + \lambda_2)
57 * \f]
58 * \ingroup features
59 */
60 template <typename PointT> inline bool
62 Eigen::Vector4f &plane_parameters, float &curvature)
63 {
64 // Placeholder for the 3x3 covariance matrix at each surface patch
65 EIGEN_ALIGN16 Eigen::Matrix3f covariance_matrix;
66 // 16-bytes aligned placeholder for the XYZ centroid of a surface patch
67 Eigen::Vector4f xyz_centroid;
68
69 if (cloud.size () < 3 ||
70 computeMeanAndCovarianceMatrix (cloud, covariance_matrix, xyz_centroid) == 0)
71 {
72 plane_parameters.setConstant (std::numeric_limits<float>::quiet_NaN ());
73 curvature = std::numeric_limits<float>::quiet_NaN ();
74 return false;
75 }
76
77 // Get the plane normal and surface curvature
78 solvePlaneParameters (covariance_matrix, xyz_centroid, plane_parameters, curvature);
79 return true;
80 }
81
82 /** \brief Compute the Least-Squares plane fit for a given set of points, using their indices,
83 * and return the estimated plane parameters together with the surface curvature.
84 * \param cloud the input point cloud
85 * \param indices the point cloud indices that need to be used
86 * \param plane_parameters the plane parameters as: a, b, c, d (ax + by + cz + d = 0)
87 * \param curvature the estimated surface curvature as a measure of
88 * \f[
89 * \lambda_0 / (\lambda_0 + \lambda_1 + \lambda_2)
90 * \f]
91 * \ingroup features
92 */
93 template <typename PointT> inline bool
95 Eigen::Vector4f &plane_parameters, float &curvature)
96 {
97 // Placeholder for the 3x3 covariance matrix at each surface patch
98 EIGEN_ALIGN16 Eigen::Matrix3f covariance_matrix;
99 // 16-bytes aligned placeholder for the XYZ centroid of a surface patch
100 Eigen::Vector4f xyz_centroid;
101 if (indices.size () < 3 ||
102 computeMeanAndCovarianceMatrix (cloud, indices, covariance_matrix, xyz_centroid) == 0)
103 {
104 plane_parameters.setConstant (std::numeric_limits<float>::quiet_NaN ());
105 curvature = std::numeric_limits<float>::quiet_NaN ();
106 return false;
107 }
108 // Get the plane normal and surface curvature
109 solvePlaneParameters (covariance_matrix, xyz_centroid, plane_parameters, curvature);
110 return true;
111 }
112
113 /** \brief Flip (in place) the estimated normal of a point towards a given viewpoint
114 * \param point a given point
115 * \param vp_x the X coordinate of the viewpoint
116 * \param vp_y the X coordinate of the viewpoint
117 * \param vp_z the X coordinate of the viewpoint
118 * \param normal the plane normal to be flipped
119 * \ingroup features
120 */
121 template <typename PointT, typename Scalar> inline void
122 flipNormalTowardsViewpoint (const PointT &point, float vp_x, float vp_y, float vp_z,
123 Eigen::Matrix<Scalar, 4, 1>& normal)
124 {
125 Eigen::Matrix <Scalar, 4, 1> vp (vp_x - point.x, vp_y - point.y, vp_z - point.z, 0);
126
127 // Dot product between the (viewpoint - point) and the plane normal
128 float cos_theta = vp.dot (normal);
129
130 // Flip the plane normal
131 if (cos_theta < 0)
132 {
133 normal *= -1;
134 normal[3] = 0.0f;
135 // Hessian form (D = nc . p_plane (centroid here) + p)
136 normal[3] = -1 * normal.dot (point.getVector4fMap ());
137 }
138 }
139
140 /** \brief Flip (in place) the estimated normal of a point towards a given viewpoint
141 * \param point a given point
142 * \param vp_x the X coordinate of the viewpoint
143 * \param vp_y the X coordinate of the viewpoint
144 * \param vp_z the X coordinate of the viewpoint
145 * \param normal the plane normal to be flipped
146 * \ingroup features
147 */
148 template <typename PointT, typename Scalar> inline void
149 flipNormalTowardsViewpoint (const PointT &point, float vp_x, float vp_y, float vp_z,
150 Eigen::Matrix<Scalar, 3, 1>& normal)
151 {
152 Eigen::Matrix <Scalar, 3, 1> vp (vp_x - point.x, vp_y - point.y, vp_z - point.z);
153
154 // Flip the plane normal
155 if (vp.dot (normal) < 0)
156 normal *= -1;
157 }
158
159 /** \brief Flip (in place) the estimated normal of a point towards a given viewpoint
160 * \param point a given point
161 * \param vp_x the X coordinate of the viewpoint
162 * \param vp_y the X coordinate of the viewpoint
163 * \param vp_z the X coordinate of the viewpoint
164 * \param nx the resultant X component of the plane normal
165 * \param ny the resultant Y component of the plane normal
166 * \param nz the resultant Z component of the plane normal
167 * \ingroup features
168 */
169 template <typename PointT> inline void
170 flipNormalTowardsViewpoint (const PointT &point, float vp_x, float vp_y, float vp_z,
171 float &nx, float &ny, float &nz)
172 {
173 // See if we need to flip any plane normals
174 vp_x -= point.x;
175 vp_y -= point.y;
176 vp_z -= point.z;
177
178 // Dot product between the (viewpoint - point) and the plane normal
179 float cos_theta = (vp_x * nx + vp_y * ny + vp_z * nz);
180
181 // Flip the plane normal
182 if (cos_theta < 0)
183 {
184 nx *= -1;
185 ny *= -1;
186 nz *= -1;
187 }
188 }
189
190 /** \brief Flip (in place) normal to get the same sign of the mean of the normals specified by normal_indices.
191 *
192 * The method is described in:
193 * A. Petrelli, L. Di Stefano, "A repeatable and efficient canonical reference for surface matching", 3DimPVT, 2012
194 * A. Petrelli, L. Di Stefano, "On the repeatability of the local reference frame for partial shape matching", 13th International Conference on Computer Vision (ICCV), 2011
195 *
196 * Normals should be unit vectors. Otherwise the resulting mean would be weighted by the normal norms.
197 * \param[in] normal_cloud Cloud of normals used to compute the mean
198 * \param[in] normal_indices Indices of normals used to compute the mean
199 * \param[in] normal input Normal to flip. Normal is modified by the function.
200 * \return false if normal_indices does not contain any valid normal.
201 * \ingroup features
202 */
203 template<typename PointNT> inline bool
205 pcl::Indices const &normal_indices,
206 Eigen::Vector3f &normal)
207 {
208 Eigen::Vector3f normal_mean = Eigen::Vector3f::Zero ();
209
210 for (const auto &normal_index : normal_indices)
211 {
212 const PointNT& cur_pt = normal_cloud[normal_index];
213
214 if (pcl::isFinite (cur_pt))
215 {
216 normal_mean += cur_pt.getNormalVector3fMap ();
217 }
218 }
219
220 if (normal_mean.isZero ())
221 return false;
222
223 normal_mean.normalize ();
224
225 if (normal.dot (normal_mean) < 0)
226 {
227 normal = -normal;
228 }
229
230 return true;
231 }
232
233 /** \brief NormalEstimation estimates local surface properties (surface normals and curvatures)at each
234 * 3D point. If PointOutT is specified as pcl::Normal, the normal is stored in the first 3 components (0-2),
235 * and the curvature is stored in component 3.
236 *
237 * \note The code is stateful as we do not expect this class to be multicore parallelized. Please look at
238 * \ref NormalEstimationOMP for a parallel implementation.
239 * \author Radu B. Rusu
240 * \ingroup features
241 */
242 template <typename PointInT, typename PointOutT>
243 class NormalEstimation: public Feature<PointInT, PointOutT>
244 {
245 public:
246 using Ptr = shared_ptr<NormalEstimation<PointInT, PointOutT> >;
247 using ConstPtr = shared_ptr<const NormalEstimation<PointInT, PointOutT> >;
248 using Feature<PointInT, PointOutT>::feature_name_;
249 using Feature<PointInT, PointOutT>::getClassName;
250 using Feature<PointInT, PointOutT>::indices_;
251 using Feature<PointInT, PointOutT>::input_;
252 using Feature<PointInT, PointOutT>::surface_;
253 using Feature<PointInT, PointOutT>::k_;
254 using Feature<PointInT, PointOutT>::search_radius_;
255 using Feature<PointInT, PointOutT>::search_parameter_;
256
259
260 /** \brief Empty constructor. */
262 {
263 feature_name_ = "NormalEstimation";
264 };
265
266 /** \brief Empty destructor */
267 ~NormalEstimation () override = default;
268
269 /** \brief Compute the Least-Squares plane fit for a given set of points, using their indices,
270 * and return the estimated plane parameters together with the surface curvature.
271 * \param cloud the input point cloud
272 * \param indices the point cloud indices that need to be used
273 * \param plane_parameters the plane parameters as: a, b, c, d (ax + by + cz + d = 0)
274 * \param curvature the estimated surface curvature as a measure of
275 * \f[
276 * \lambda_0 / (\lambda_0 + \lambda_1 + \lambda_2)
277 * \f]
278 */
279 inline bool
281 Eigen::Vector4f &plane_parameters, float &curvature)
282 {
283 if (indices.size () < 3 ||
285 {
286 plane_parameters.setConstant (std::numeric_limits<float>::quiet_NaN ());
287 curvature = std::numeric_limits<float>::quiet_NaN ();
288 return false;
289 }
290
291 // Get the plane normal and surface curvature
292 solvePlaneParameters (covariance_matrix_, xyz_centroid_, plane_parameters, curvature);
293 return true;
294 }
295
296 /** \brief Compute the Least-Squares plane fit for a given set of points, using their indices,
297 * and return the estimated plane parameters together with the surface curvature.
298 * \param cloud the input point cloud
299 * \param indices the point cloud indices that need to be used
300 * \param nx the resultant X component of the plane normal
301 * \param ny the resultant Y component of the plane normal
302 * \param nz the resultant Z component of the plane normal
303 * \param curvature the estimated surface curvature as a measure of
304 * \f[
305 * \lambda_0 / (\lambda_0 + \lambda_1 + \lambda_2)
306 * \f]
307 */
308 inline bool
310 float &nx, float &ny, float &nz, float &curvature)
311 {
312 if (indices.size () < 3 ||
314 {
315 nx = ny = nz = curvature = std::numeric_limits<float>::quiet_NaN ();
316 return false;
317 }
318
319 // Get the plane normal and surface curvature
320 solvePlaneParameters (covariance_matrix_, nx, ny, nz, curvature);
321 return true;
322 }
323
324 /** \brief Provide a pointer to the input dataset
325 * \param cloud the const boost shared pointer to a PointCloud message
326 */
327 inline void
328 setInputCloud (const PointCloudConstPtr &cloud) override
329 {
330 input_ = cloud;
332 {
333 vpx_ = input_->sensor_origin_.coeff (0);
334 vpy_ = input_->sensor_origin_.coeff (1);
335 vpz_ = input_->sensor_origin_.coeff (2);
336 }
337 }
338
339 /** \brief Set the viewpoint.
340 * \param vpx the X coordinate of the viewpoint
341 * \param vpy the Y coordinate of the viewpoint
342 * \param vpz the Z coordinate of the viewpoint
343 */
344 inline void
345 setViewPoint (float vpx, float vpy, float vpz)
346 {
347 vpx_ = vpx;
348 vpy_ = vpy;
349 vpz_ = vpz;
350 use_sensor_origin_ = false;
351 }
352
353 /** \brief Get the viewpoint.
354 * \param [out] vpx x-coordinate of the view point
355 * \param [out] vpy y-coordinate of the view point
356 * \param [out] vpz z-coordinate of the view point
357 * \note this method returns the currently used viewpoint for normal flipping.
358 * If the viewpoint is set manually using the setViewPoint method, this method will return the set view point coordinates.
359 * If an input cloud is set, it will return the sensor origin otherwise it will return the origin (0, 0, 0)
360 */
361 inline void
362 getViewPoint (float &vpx, float &vpy, float &vpz)
363 {
364 vpx = vpx_;
365 vpy = vpy_;
366 vpz = vpz_;
367 }
368
369 /** \brief sets whether the sensor origin or a user given viewpoint should be used. After this method, the
370 * normal estimation method uses the sensor origin of the input cloud.
371 * to use a user defined view point, use the method setViewPoint
372 */
373 inline void
375 {
376 use_sensor_origin_ = true;
377 if (input_)
378 {
379 vpx_ = input_->sensor_origin_.coeff (0);
380 vpy_ = input_->sensor_origin_.coeff (1);
381 vpz_ = input_->sensor_origin_.coeff (2);
382 }
383 else
384 {
385 vpx_ = 0;
386 vpy_ = 0;
387 vpz_ = 0;
388 }
389 }
390
391 protected:
392 /** \brief Estimate normals for all points given in <setInputCloud (), setIndices ()> using the surface in
393 * setSearchSurface () and the spatial locator in setSearchMethod ()
394 * \note In situations where not enough neighbors are found, the normal and curvature values are set to NaN.
395 * \param output the resultant point cloud model dataset that contains surface normals and curvatures
396 */
397 void
398 computeFeature (PointCloudOut &output) override;
399
400 /** \brief Values describing the viewpoint ("pinhole" camera model assumed). For per point viewpoints, inherit
401 * from NormalEstimation and provide your own computeFeature (). By default, the viewpoint is set to 0,0,0. */
402 float vpx_{0.0f}, vpy_{0.0f}, vpz_{0.0f};
403
404 /** \brief Placeholder for the 3x3 covariance matrix at each surface patch. */
405 EIGEN_ALIGN16 Eigen::Matrix3f covariance_matrix_;
406
407 /** \brief 16-bytes aligned placeholder for the XYZ centroid of a surface patch. */
408 Eigen::Vector4f xyz_centroid_;
409
410 /** whether the sensor origin of the input cloud or a user given viewpoint should be used.*/
412
413 public:
415 };
416}
417
418#ifdef PCL_NO_PRECOMPILE
419#include <pcl/features/impl/normal_3d.hpp>
420#endif
Define methods for centroid estimation and covariance matrix calculus.
Feature represents the base feature class.
Definition feature.h:107
double search_parameter_
The actual search parameter (from either search_radius_ or k_).
Definition feature.h:234
const std::string & getClassName() const
Get a string representation of the name of this class.
Definition feature.h:244
double search_radius_
The nearest neighbors search radius for each point.
Definition feature.h:237
int k_
The number of K nearest neighbors to use for each point.
Definition feature.h:240
std::string feature_name_
The feature name.
Definition feature.h:220
PointCloudInConstPtr surface_
An input point cloud describing the surface that is to be used for nearest neighbors estimation.
Definition feature.h:228
NormalEstimation estimates local surface properties (surface normals and curvatures)at each 3D point.
Definition normal_3d.h:244
NormalEstimation()
Empty constructor.
Definition normal_3d.h:261
shared_ptr< const NormalEstimation< PointInT, PointOutT > > ConstPtr
Definition normal_3d.h:247
~NormalEstimation() override=default
Empty destructor.
EIGEN_ALIGN16 Eigen::Matrix3f covariance_matrix_
Placeholder for the 3x3 covariance matrix at each surface patch.
Definition normal_3d.h:405
void setViewPoint(float vpx, float vpy, float vpz)
Set the viewpoint.
Definition normal_3d.h:345
bool use_sensor_origin_
whether the sensor origin of the input cloud or a user given viewpoint should be used.
Definition normal_3d.h:411
void computeFeature(PointCloudOut &output) override
Estimate normals for all points given in <setInputCloud (), setIndices ()> using the surface in setSe...
Definition normal_3d.hpp:48
bool computePointNormal(const pcl::PointCloud< PointInT > &cloud, const pcl::Indices &indices, Eigen::Vector4f &plane_parameters, float &curvature)
Compute the Least-Squares plane fit for a given set of points, using their indices,...
Definition normal_3d.h:280
float vpx_
Values describing the viewpoint ("pinhole" camera model assumed).
Definition normal_3d.h:402
bool computePointNormal(const pcl::PointCloud< PointInT > &cloud, const pcl::Indices &indices, float &nx, float &ny, float &nz, float &curvature)
Compute the Least-Squares plane fit for a given set of points, using their indices,...
Definition normal_3d.h:309
void useSensorOriginAsViewPoint()
sets whether the sensor origin or a user given viewpoint should be used.
Definition normal_3d.h:374
typename Feature< PointInT, PointOutT >::PointCloudOut PointCloudOut
Definition normal_3d.h:257
Eigen::Vector4f xyz_centroid_
16-bytes aligned placeholder for the XYZ centroid of a surface patch.
Definition normal_3d.h:408
void getViewPoint(float &vpx, float &vpy, float &vpz)
Get the viewpoint.
Definition normal_3d.h:362
typename Feature< PointInT, PointOutT >::PointCloudConstPtr PointCloudConstPtr
Definition normal_3d.h:258
shared_ptr< NormalEstimation< PointInT, PointOutT > > Ptr
Definition normal_3d.h:246
void setInputCloud(const PointCloudConstPtr &cloud) override
Provide a pointer to the input dataset.
Definition normal_3d.h:328
PointCloudConstPtr input_
The input point cloud dataset.
Definition pcl_base.h:147
typename PointCloud::ConstPtr PointCloudConstPtr
Definition pcl_base.h:74
IndicesPtr indices_
A pointer to the vector of point indices to use.
Definition pcl_base.h:150
PointCloud represents the base class in PCL for storing collections of 3D points.
std::size_t size() const
#define PCL_MAKE_ALIGNED_OPERATOR_NEW
Macro to signal a class requires a custom allocator.
Definition memory.h:63
unsigned int computeMeanAndCovarianceMatrix(const pcl::PointCloud< PointT > &cloud, Eigen::Matrix< Scalar, 3, 3 > &covariance_matrix, Eigen::Matrix< Scalar, 4, 1 > &centroid)
Compute the normalized 3x3 covariance matrix and the centroid of a given set of points in a single lo...
Definition centroid.hpp:509
void flipNormalTowardsViewpoint(const PointT &point, float vp_x, float vp_y, float vp_z, Eigen::Matrix< Scalar, 4, 1 > &normal)
Flip (in place) the estimated normal of a point towards a given viewpoint.
Definition normal_3d.h:122
bool flipNormalTowardsNormalsMean(pcl::PointCloud< PointNT > const &normal_cloud, pcl::Indices const &normal_indices, Eigen::Vector3f &normal)
Flip (in place) normal to get the same sign of the mean of the normals specified by normal_indices.
Definition normal_3d.h:204
bool computePointNormal(const pcl::PointCloud< PointT > &cloud, Eigen::Vector4f &plane_parameters, float &curvature)
Compute the Least-Squares plane fit for a given set of points, and return the estimated plane paramet...
Definition normal_3d.h:61
void solvePlaneParameters(const Eigen::Matrix3f &covariance_matrix, const Eigen::Vector4f &point, Eigen::Vector4f &plane_parameters, float &curvature)
Solve the eigenvalues and eigenvectors of a given 3x3 covariance matrix, and estimate the least-squar...
Definition feature.hpp:52
Defines functions, macros and traits for allocating and using memory.
bool isFinite(const PointT &pt)
Tests if the 3D components of a point are all finite param[in] pt point to be tested return true if f...
Definition point_tests.h:55
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition types.h:133
Defines all the PCL and non-PCL macros used.
A point structure representing Euclidean xyz coordinates, and the RGB color.