Macaulay2 » Documentation
Packages » PencilsOfQuadrics :: symmetricM
next | previous | forward | backward | up | index | toc

symmetricM -- part of a CliffordModule

Description

the underlying pencil of quadratic forms

i1 : setRandomSeed 0
 -- setting random seed to 0

o1 = 0
i2 : kk = ZZ/101

o2 = kk

o2 : QuotientRing
i3 : g = 1

o3 = 1
i4 : (S, qq,  R,  u, M1, M2, Mu1, Mu2)=randomNicePencil(kk,g);
i5 : M = cliffordModule(M1,M2, R)

o5 = CliffordModule{...6...}

o5 : CliffordModule
i6 : M.symmetricM

o6 = | -5t  -50s 6t     -6t  |
     | -50s 0    -9t    5t   |
     | 6t   -9t  -s-30t 3t   |
     | -6t  5t   3t     -48t |

             4      4
o6 : Matrix R  <-- R

this can also be obtained by

i7 : symMatrix(M.evenOperators,M.oddOperators)

o7 = | -5t  -50s 6t     -6t  |
     | -50s 0    -9t    5t   |
     | 6t   -9t  -s-30t 3t   |
     | -6t  5t   3t     -48t |

             4      4
o7 : Matrix R  <-- R

See also

For the programmer

The object symmetricM is a symbol.


The source of this document is in /build/reproducible-path/macaulay2-1.25.06+ds/M2/Macaulay2/packages/PencilsOfQuadrics.m2:2223:0.